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Abstract

High-Order Markov Chains (HOMC) are conventional models, based on transition probabilities,
that are used by the United States Department of Agriculture (USDA) National Agricultural
Statistics Service (NASS) to study crop-rotation patterns over time. However, HOMCs rou-
tinely suffer from sparsity and identifiability issues because the categorical data are represented
as indicator (or dummy) variables. In fact, the dimension of the parametric space increases ex-
ponentially with the order of HOMCs required for analysis. While parsimonious representations
reduce the number of parameters, as has been shown in the literature, they often result in less
accurate predictions. Most parsimonious models are trained on big data structures, which can
be compressed and efficiently processed using alternative algorithms. Consequently, a thorough
evaluation and comparison of the prediction results obtain using a new HOMC algorithm and
different types of Deep Neural Networks (DNN) across a range of agricultural conditions is war-
ranted to determine which model is most appropriate for operational crop specific land cover
prediction of United States (US) agriculture. In this paper, six neural network models are applied
to crop rotation data between 2011 and 2021 from six agriculturally intensive counties, which
reflect the range of major crops grown and a variety of crop rotation patterns in the Midwest
and southern US. The six counties include: Renville, North Dakota; Perkins, Nebraska; Hale,
Texas; Livingston, Illinois; McLean, Illinois; and Shelby, Ohio. Results show the DNN models
achieve higher overall prediction accuracy for all counties in 2021. The proposed DNN models
allow for the ingestion of long time series data, and robustly achieve higher accuracy values than
a new HOMC algorithm considered for predicting crop specific land cover in the US.

Keywords categorical prediction; crop rotation patterns; deep neural networks; transition
probability

1 Introduction
Accurate prediction of crop-specific planting prior to the growing season is important for crop
monitoring, yield assessment, and decision support, and to strengthen traditional survey pro-
grams conducted by the United States Department of Agriculture (USDA) National Agricultural
Statistics Service (NASS). The NASS Cropland Data Layers (CDL; Boryan et al., 2011), which
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are 30m crop-specific land-cover datasets, are the basis for crop rotation modeling described
in this paper. The CDLs are available for the 48 conterminous states from 2008 to 2022 and
disseminated to the public via the CroplandCROS web application (https://croplandcros.scinet.
usda.gov/). When blended with USDA Farm Service Agency (FSA) Common Land Unit (CLU)
farmer-reported data (Heald, 2002; USDA, FSA, 2017), CDLs have the potential to improve
the estimation and forecasting of planted acreage as well as the imputation and sample design
of area-based surveys. However, due to the large volume of data required to run the models,
standard processing algorithms are insufficient to produce results within the short time frame
required by operational programs. Therefore, NASS has been investigating and developing more
suitable approaches to produce crop-prediction results that can be run at the national scale
within a relatively brief time frame (i.e., within a day or two when operating in a high-performing
computational environment).

Any sequence of crops observed over time can be considered as a categorical time series,
which can be analyzed using different modeling strategies described in the literature. The most
prominent examples are High-Order Markov Chains (HOMC; Tong, 1975), discrete autoregres-
sive moving average (Jacobs and Lewis, 1983), integer autoregressive processes (Latour, 1998),
and generalized linear models (Fokianos and Kedem, 2003). Most of these strategies, however,
commonly use or approximate Transition Probabilities (TP), which are a natural avenue to
model the temporal dynamics of a discrete random process. Thus, a random variable Xt with a
finite discrete support, S = {0, 1, . . . , m− 1}, where m represents the total number of observable
states at time t , is used to describe the temporal evolution of the process. In their simplicity,
HOMC can model crop-rotation patterns using the previous p categorical values to determine
the future rotations.

Hence, consider a Markov chain of order p, Xt−p, . . . , Xt−1, Xt , which satisfies the following
equation:

Pr(Xt = j |Xt−1 = s1, Xt−2 = s2, . . .) = Pr(Xt = j |Xt−1 = s1, Xt−2 = s2, . . . , Xt−p = sp), (1)

for any j, s1, . . . , sp ∈ S, where the TP in (1) is conditioned on a finite set of previous states,
i.e. by making the assumption that any state observed before time t − p does not provide any
information on the status of the chain at time t . This assumption allows one to build a model
that requires the estimation of mp(m−1) parameters, which are usually represented as a generic
entry tij of a TP matrix T ∈ [0, 1]mp×m, where

tij = Pr(Xt = j |Xt−1 = s1, . . . , Xt−p = sp),

so that all rows sum to 1, for any i = s1+ms2+m2s3+· · ·+mp−1sp. Even if TP matrices account for
all possible combinations of events, they become computationally impractical, especially when m

is very large and p > 1. Moreover, since the size of parametric space increases exponentially at
the rate O(mp), most entries of the TP matrix are unidentifiable. This commonly occurs when
the number of observed unique rotations is much smaller than the size of the parametric space.
Pegram (1980), Logan (1981) and Raftery (1985) were among the first to propose parsimonious
models to approximate the TP of a fully specified HOMC. However, these models are less flexible
than Machine Learning (ML) models that are widely accepted by the remote sensing community.

To analyze a categorical spatio-temporal process, Li and Reynolds (1997) developed an
event-driven approach based on cellular automata (Wolfram, 1984) and first order Markov
chains. This hybrid methodology was used to simulate vegetation dynamics, where TPs gov-
ern temporal patterns and local rules determine the spatial configuration of the neighborhood.

https://croplandcros.scinet.usda.gov/
https://croplandcros.scinet.usda.gov/
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While this approach is relatively accurate (Halmy et al., 2015), it does not take advantage of
long-term dynamics in the observed patterns. Osman et al. (2015) overcame this issue by using
Bayesian networks to model the temporal dynamics of short sequences of input data (up to six
years with only five crop categories). The method proposed by Osman et al. (2015) resulted
in a 60% crop prediction accuracy without using remotely sensed images. Parker et al. (2003)
reviewed different methods to study crop rotation patterns, where neural networks were con-
sidered as evolutionary models. Fully connected Deep Neural Networks (DNN) were evaluated
by Zhang et al. (2019) to predict major crops in the United States (US) Corn Belt, which is
the Midwestern US region that dominates US corn production. Although more sophisticated
extensions exist (Yaramasu et al., 2020), DNNs are still limiting when training and validating
the model over large areas (even with dedicated hardware for parallel computations). The para-
metric space of these established models reduces to O(mp) when using binary indicator variables
to encode the m land-cover categories. The parametric space can be further reduced when us-
ing Recurrent Neural Networks (RNN) that take advantage of nonlinear dependencies across
time (Hopfield, 1982; Hochreiter and Schmidhuber, 1997). In recent years, sampling algorithms,
which can also reduce the number of input data and the resulting training time, have become
more common. These algorithms allowed Johnson and Mueller (2021) to achieve an overall ac-
curacy of about 71% even though their random-forest model was trained on only 0.25% of the
available data. Because random forests are an ensemble of decision trees (Breiman, 2001), they
randomly disrupt the rotation patterns in (1), and this can result in unstable approximations
of TPs. This aspect is more accentuated when pruning a single Classification And Regression
Tree (CART; Breiman et al., 1984). In fact, to reproduce the results of a HOMC of order p,
a CART model that uses recursive binary partitioning still requires a number of branches of
size O(mp).

A feature engineering approach is proposed in this paper to decrease the dimension of the
dataset (i.e., by reducing the number of variables). Like principal component analysis (PCA;
Jolliffe, 1986), feature-reduction leads to parsimonious models that can achieve results compa-
rable to more complex models (Buciluǎ et al., 2006; Ba and Caruana, 2014). However, these
feature reduction algorithms result in information loss when compressing data. Thus, a “Dense”
Binary Representation (DBR) of the categorical values is considered by taking inspiration from
quantum information processing (Barnett, 2009), which uses a base-2 representation (Yuen,
1975; Miyashita et al., 2016) of the m integer numbers associated to each categorical value in S.
In fact, instead of using dummy variables (for the presence/absence of a particular categorical
value), the base-2 representation can reduce the number of binary variables to �log2 m� without
losing information. Therefore, this allows one to operate with a reduced number of variables and
to adopt more parsimonious models that may require less computational capacity.

After Deutsch (1985) introduced the first universal quantum Turing machine, its computa-
tional complexity was further investigated by Bernstein and Vazirani (1997), who compared it to
a probabilistic Turing machine (Santos, 1969). Although these conceptual machines were shown
to solve NP-hard problems in polynomial time (Berthiaume and Brassard, 1994; Shor, 1994;
Grover, 1996), these ideas were not implemented in practice until the appearance of the first
quantum computers. Nonetheless, Quantum-Inspired Neural Networks (QINN) were introduced
by Menneer and Narayanan (1995), who developed a computationally efficient neural network
where the weights assumed quantum properties. Following the introduction of the first quantum
computational devices (Gibney, 2017), successive developments and examples of recent applica-
tions of quantum neural networks were presented in Jeswal and Chakraverty (2019). After the
introduction of a python package named tensorflow-quantum (0.7.2; Broughton et al., 2020), the
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development of hybrid neural network that operates with quantum layers became more accessible
to researchers. However, the QINNs presented in the following sections can be processed using
classical computers (even without the use of specialized hardware that might not be available
to most practitioners).

The quantum neural models proposed in this paper are designed to study the predictive
distribution of categorical outputs by mimicking the behavior of conceptual quantum circuits.
Predictions and their associated uncertainties can be estimated using the random outputs gen-
erated by the circuits. One caveat of this approach is that while it is computationally more
appealing than established bootstrap algorithms (Efron, 1979), it can be time-prohibitive when
using stochastic algorithms for computing predictions on large datasets. Consequently, to reduce
the computational burden, a deterministic solution is evaluated for its potential to expand the
crop-rotation analysis to a national scale. Moreover, due to DBR, the QINN model can process
crop-rotation patterns over longer time periods with less memory usage for data processing.

The remainder of this paper is structured as follows. Section 2 includes a description of the
data preparation, the neural approximation of a quantum circuit, the prediction mechanism,
and entropy-based statistics to evaluate the uncertainty associated with the crop predictions.
Section 3 describes a real data application, and final conclusion and remarks are presented in
Section 4.

2 Methodology

2.1 Data Preparation

Crop-rotation data obtained from the CDL are categorical time-series data that are produced
through a classification process. This process is based on remotely sensed images, farmer-reported
ground-reference data, and other ancillary data to ensure the production of high-quality, crop-
specific, land cover products (Boryan et al., 2011). The CDLs are disseminated in GeoTIFF
format (Ritter et al., 2000; Mahammad and Ramakrishnan, 2003) at the US national level.
However, due to the large amount of data, specific areas of interest need to be subset before
processing. This approach has been beneficial for processing longer time windows, and it allows
the analysis to be focused on local rotation dynamics.

In their original format, the raw data are loaded in memory to construct a tabular dataset
having the annual information stored by column. This implies that the raster files are not
processed as a sequence of images, because the focus of this study is on the temporal evolution
of crop rotation patterns. In fact, this perspective allows the proposed models to be used also
for processing field-level data, where the crop information is stored in an attribute table that
can be linked to a set of polygons delineating the fields (ESRI, 1998).

Categorical data can be used as integer numbers by models or algorithms leveraging HOMC
theory (especially when both m and p are small). However, these data are typically converted
into indicator variables to form a binary sequence of length (p+1) m, while the DBR can produce
a shorter sequences of length (p + 1)�log2 m� without losing information. This is accomplished
through the base-2 representation of integer numbers, which can also be used to operate with
conceptual quantum circuits.

Rather than operating with bits that only represent either the state 0 or 1, quantum circuits
operate with qubits (or quantum bit), which can simultaneously represent two eigenstates (or
orthogonal states), i.e. |0〉 and |1〉, through a superposition ψ〉 = α0|0〉 + α1|1〉, where the eigen-
states |0〉 = (z0, 0)� ∈ C

2, |1〉 = (0, z1)
� ∈ C

2, for any z0, z1 ∈ C that satisfy the condi-
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tions |z0|2 = |z1|2 = 1, and α0, α1 ∈ C, such that |α0|2 +|α1|2 = 1. Therefore, the measurement of
a physical qubit with quantum state |ψ〉 will return a zero with probability |α0|2 or a one with
probability |α1|2.

When operating with q qubits, the superposition is a complex vector of dimension 2q that
describes the distribution of all possible combinations of zeros and ones as outputs from a quan-
tum circuit. All these combinations can be found in the finite set {0, 1}q , where the superscript
indicates q Cartesian products of the set {0, 1} with itself. Because the number of categorical
values is less than the cardinality of the set of all possible outcomes from a quantum circuit,
i.e. m < |{0, 1}q | = 2q , one can build a one-to-one correspondence between the m categorical
values and the first m binary outcomes obtained through the measurement of the q qubits. For
example, if q = 2, the superposition is formulated as

α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉 ∈ C
4, (2)

where α00, α01, α10 and α11 ∈ C, such that |α00|2 +|α01|2 +|α10|2 +|α11|2 = 1, and the eigenvectors
are denoted by

|00〉 = |0〉 ⊗ |0〉 = (z0z0, 0, 0, 0)� ∈ C
4,

|01〉 = |1〉 ⊗ |0〉 = (0, z1z0, 0, 0)� ∈ C
4,

|10〉 = |0〉 ⊗ |1〉 = (0, 0, z0z1, 0)� ∈ C
4,

|11〉 = |1〉 ⊗ |1〉 = (0, 0, 0, z1z1)
� ∈ C

4,

where the symbol ⊗ denotes the Kroneker product. Therefore, the measurement of q physical
qubits with the superposition in (2) will return the vector (0, 0)� associated with the categorical
value 0 with probability |α00|2, the vector (0, 1)� associated with the categorical value 1 with
probability |α01|2, the vector (1, 0)� associated with the categorical value 2 with probability |α10|2,
and the vector (1, 1)� associated with the categorical value 3 with probability |α11|2.

Furthermore, quantum circuits process the information in input using unitary transforma-
tions (as one-qubit gate) on individual qubits, while multi-qubit transformations generate highly
entangled states. Entanglement is achieved when two or more qubits provide information on the
state of the others (i.e. when one qubit becomes dependent to a degree on the state of another).
The state of a single qubit can be altered as U|ψ〉, where U ∈ C

2×2 is a unitary matrix. How-
ever, q qubits are processed using adequate unitary matrices of size q × q to alter the degree of
entanglement. Because unitary transformations preserve the inner product between two vectors,
unitary matrices ensure the computational reversibility of a quantum algorithm.

2.2 Model Development
Traditional neural networks were developed to mathematically imitate the flow of information
as processed by biological systems (Bishop and Nasrabadi, 2006). McCulloch and Pitts (1943)
were the first to attempt modeling neural synapses and introduced concepts that can be used
to develop quantum neural computing. For example, the qubits initialized to a 0〉 state are
individually processed using the Hadamard gates, i.e. H|0〉, where

H = 1√
2

[
1 1
1 −1

]
.

This operation sets the qubits to a uniform superposition between the two eigenstates, and
hence, a measurement of the state H|0〉 will return a zero or a one with equal probability, i.e. 1

2 .
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This operation that follows can be performed using rotation gates, that are defined as

R =
[

cos(β

2 ) −i sin(
β

2 )

−i sin(
β

2 ) cos(β

2 )

][
cos( θ

2 ) − sin( θ
2 )

sin( θ
2 ) cos( θ

2 )

][
e−i

ζ
2 0

0 ei
ζ
2

]
,

where i = √−1, and β, θ, ζ ∈ [−π, π ] are trainable parameters. This means that the input
information in each qubit is processed as RH|0〉 before being entangled through the use of
controlled-not (CNOT) gates, i.e.

CNOT =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ .

The CNOT gate entangles the quantum states of two qubits, and several CNOT gates can
be used to combine the information in the qubits before it is passed through the next layer
of a neural network (Panchi and Shiyong, 2008). Figure 1 illustrates a quantum circuit that
processes four qubits using the Hadamard, rotation, and CNOT gates (Zhao and Wang, 2021).
Although the neural quantum circuit in Figure 1 satisfies the requirements in Schuld et al.
(2014), the implementation of a quantum neural network that uses this approach would have
been challenging without using specialized software. However, the conceptual circuit shown in
Figure 1 can be easily implemented using the cirq package (Cirq Developers, 2022) in python, and
it can be used as a layer of a DNN model through the use of the tensorflow-quantum package.

However, when a neural network implementation based on the tensorflow-quantum package
cannot be trained with traditional computational devices (due to the large number of observa-
tions), it is possible to develop a neural network model to mimic the behavior of such circuits. In
practice, a QINN can process binary inputs through a sequence of hidden layers and can, finally,
simulate a binary output from a multivariate Bernoulli distribution. This contrasts with more
established architectures that compute the most likely category from a multinomial distribution.

Figure 1: Quantum circuit that operates on four qubits (or quantum bits) with the capacity of
processing 24 = 16 eigenstates (or orthogonal states) in input. The green squares are quantum
logic gates applicable to individual qubits. The quantum gates depicted with the matrix H
are Hadamard gates, and those represented with the matrix R are rotation gates. Two-qubit
operations, such as the CNOT (or controlled not), are represented by linking the symbols ⊕
and • with a straight vertical line. Single-qubit operations change the probability amplitudes of
the qubits, while multi-qubit operations are used to entangle two or more qubits.
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In fact, empirical predictive distributions can be constructed by looking at the relative frequen-
cies of the random binary digits, and other inferential analyses are then conducted similarly to
parametric bootstrap methods.

From a computational perspective, the feature “compression” performed by the DBR leads
to parsimonious networks that can be trained much more quickly. Thus, the size of the paramet-
ric space decreases to O(�log2 m�p) when using fully connected, feed-forward neural networks.
However, the number of parameters shrinks to

O(�log2 m�) (3)

when recurrent layers are introduced in the neural architecture. This occurs because the number
of parameters in a recurrent layer does not depend on the number of time steps. E.g., the
SimpleRNN implementation in the tensorflow-keras package (Chollet et al., 2015) requires a
number of parameters that is equal to

(�log2 m� + 1)u + u2,

where u represents the number of neurons (or units) within the recurrent layer, and �log2 m�+ 1
denotes the number of coefficients associated to the input features and the bias parameter.
Furthermore, Long-Short Term Memory (LSTM; Hochreiter and Schmidhuber, 1997) and Gated
Recurrent Units (GRU; Cho et al., 2014) also have a number of parameters that is expressed
solely as a function of �log2 m� and u, where u is here treated as a constant to obtain the same
Landau notation shown in (3).

When the number of predictions to compute is large, the randomization required to mimic
a quantum circuit becomes very expensive. Therefore, a deterministic collapsing mechanism of
the output layer can be used instead of the actual measuring mechanism of the quantum-circuit
states. This can be easily performed using a given threshold to compute the most probable
binary values from the output layer of a QINN model. Denoting the vector-valued output of
QINN by (ŷ0, ŷ1, . . . , ŷq−1)

� ∈ [0, 1]q , one can write the categorical prediction in its expanded
form on base 2 as

X̂t =
q−1∑
j=0

2j1[τj , 1](ŷj ), (4)

where the indicator function 1[τj , 1](ŷj ) is defined as

1[τj , 1](ŷj ) =
{

1, if ŷj ∈ [τj , 1],
0, otherwise,

where the thresholds τj ∈ (0, 1), for any j = 1, . . . , q, can be either set to 0.5 or computed by
minimizing prediction errors. In fact, optimized thresholds should be considered especially when
operating with class-imbalanced samples.

Further computational benefits arise by using sigmoidal functions for modeling the output
neurons. Because the derivatives of these functions can be formulated more easily, they require
less computations resulting in enhanced computational performance.

2.3 Evaluation of Prediction Quality
Measures of prediction accuracy (Congalton and Green, 2019) are typically computed using
historical test data to determine whether a trained model can produce good forecasts. This
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often results in a set of statistics that provide a reasonable assessment of the overall prediction
quality by losing small-scale information that could be relevant in other applications. E.g., field-
level measures of prediction uncertainty can be used to identify fields for which the acreage of a
specific crop can be accurately imputed as suggested by Sartore et al. (2022).

Although normalized entropy measures (Shannon, 1948) can be computed for DNN mod-
els (Zhang et al., 2019; Yaramasu et al., 2020), small-scale QINN-prediction uncertainty approx-
imated using T-norms (Gupta and Qi, 1991) is preferable because it avoids the reconstruction of
the empirical predictive distribution over 2q possible outcomes. Moreover, if at least one binary
output is more uncertain than others, the predicted category from the QINN-model is more
likely to be incorrect. Therefore, the maximum normalized uncertainty value computed for each
output neuron can provide an uncertainty index for the prediction in (4). This operation can be
viewed as the union of q fuzzy sets (Zadeh, 1973), where normalized uncertainties are used as
membership functions. Thus, the uncertainty of the categorical prediction can be computed as
the maximum normalized entropy:

UH

[
X̂t

]
= max

i=0,...,q−1

{
ĥi

}
,

where

ĥi =
{

−[
(1 − ŷi) log(1 − ŷi) + ŷi log(ŷi)

]
log(2)−1, if ŷi ∈ (0, 1),

0, if ŷi ∈ {0, 1}, (5)

or the maximum normalized Gini index

UG

[
X̂t

]
= max

i=0,...,q−1

{
4ŷi(1 − ŷi)

}
,

which is more appropriate for large datasets because it avoids the computation of the logarithms
in (5) and provides a reasonable approximation. In both cases, the uncertainty index takes
values from the interval [0, 1] (as shown in Figure 2), where 0 and 1 denote high and low model
confidence respectively.

2.4 An Alternative Markov-Based Algorithm
For comparison purposes, a new predictive algorithm based on HOMC theory was specifically
developed to select the most likely category without estimating the whole TP matrix. Because
the number of matches between the most recent rotation patterns and those observed in the
past (i.e. having a temporal lag of one year) diminishes as p increases, it is also required to
produce predictions using shorter patterns (i.e. having length p∗ < p). This becomes particularly
helpful to produce predictions for the entire area without missing certain locations due to the
possible absence of a certain pattern on record. For implementation purposes, the algorithm
iteratively replaces the predictions made at the previous step with the most likely category
using increasingly longer patterns of length p∗. The algorithm stops when the last updates have
been made using crop rotation patterns of length p∗ = p.

At first, the algorithm assigns to the whole county the most frequent category observed at
time t − 1. Successively, p∗ is set to one, and the categories observed at time t − p∗ − 1 are
matched to those at time t − p∗. The most frequent categories for each pattern that have been
matched in the past are then computed using simple counts that satisfy the matching conditions.
For example, if corn is most frequently planted after soybeans, then corn is predicted for time t

in a field, which was planted to soybeans at time t −1. These predictions are then used to update
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Figure 2: Maximum normalized Gini index (dashed line) and maximum normalized entropy
index (solid line).

the categorical values for the locations with a matching pattern. Afterward, the value of p∗ is
increased to add the information from one extra year in the study. Therefore, more complex
patterns, which include more than one crop in a sequence, are matched and counted to identify
the most frequent crops. This iterative process continues until the final predictions are made
with p∗ = p.

This algorithm can be computationally more appealing because it is based on counting crop
transitions rather than identifying optimal parameter values through gradient-based optimiza-
tion algorithms. Furthermore, it does not require a lot of memory to run, because it operates
with the input data in their native format without using the base-2 representation that requires
at least 32�log2 m� bits to store binary values according to the IEEE 754 standard (Kahan,
1996).

3 Real Data Application
To ensure the reproducibility and replicability of the methodology and algorithms described in
Section 2, crop rotation patterns were studied using exclusively publicly available CDL data (Bo-
ryan et al., 2011). Six agriculturally intensive counties, which reflect the range of major crops
grown in the Midwest and southern regions of the US, were selected to assess the performance
of the considered models. The county locations are highlighted in Figure 3 with the letters A–F.
All CDL categories were used for the predictive analysis. The six counties include: Renville,
North Dakota (A); Perkins, Nebraska (B); Hale, Texas (C); Livingston, Illinois (D); McLean,
Illinois (E); and Shelby, Ohio (F). Eight major crops including barley, cover crops, oats, rye, du-
rum wheat, spring wheat, winter wheat and soybeans are grown in Renville, North Dakota (A).
Corn and winter wheat are grown in Perkins, Nebraska (B). Cotton, corn, winter wheat, and
sorghum are the major commodities grown in Hale, Texas (C). Corn and soybeans are the major
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Figure 3: Six agriculturally intensive US counties were selected to assess model performance.
The county locations are identified with the letters A – F. The six counties include: Renville,
North Dakota (A); Perkins, Nebraska (B); Hale, Texas (C); Livingston, Illinois (D); Mclean,
Illinois (E); and Shelby, Ohio (F). The number of CDL categories that rotate from 2011 to 2021
are shown. Pale yellow indicates no change. Yellow indicates two crops rotating back and forth.
Brown and red indicate three to five crops rotating and purple and blue indicate as many as 10
to 11 crops or CDL categories in rotation.
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commodities grown in Livingston (D) and McLean (E) Counties in Illinois, as well as Shelby,
County in Ohio (F).

Figure 3 identifies the number of CDL categories (crops and other land cover types) that
change or rotate from 2011 to 2021 at the pixel level. For example, in Renville, North Dakota (A),
there are many crops with varied rotation patterns. The CDL categories that do not generally
change or rotate, such as water, forest, grass/pasture, or urban areas, are illustrated in pale
yellow. Much of the land cover in Renville, North Dakota rotates between different crops from
four to eight times (as shown in the brown-red areas) over the eleven years considered. Some
pixels illustrate a rotation pattern between different crop every year as shown in blue. In Perkins,
Nebraska (B) there are fewer crops grown with more consistent rotations. These are shown in
predominantly yellow and brown. Four major crops are grown in Hale, Texas (C) and rotate
consistently with two to five identified crops. The corn and soybeans grown in Livingston (D)
and McLean (E) Counties in Illinois follow a regular rotation pattern (corn followed by soybeans
or soybeans followed by corn), which is illustrated with the yellow color. Corn and soybeans are
also grown in Shelby, County in Ohio (F) but the rotation pattern is not as perfectly consistent
back and forth from one crop to the next as shown in the brown to red colors indicating two to
five crops in the rotations.

To compare the performance of the methodology and algorithms proposed in Section 2, the
crop rotation patterns at the county-level were studied using:
• The HOMC-based algorithm described in Section 2.4.
• A feed-forward DNN (as discussed by Zhang et al., 2019) that uses indicator/dummy vari-

ables (i.e., one for the presence of a specific categorical value, and zero for its absence).
• A RNN that uses indicator/dummy variables in input and output (named RNN1).
• A RNN that uses the DBR for the variables in input and indicator/dummy variables in

output (named RNN2).
• A RNN that uses indicator/dummy variables in input and the DBR for the variables in

output (named RNN3).
• A RNN that uses the DBR for both input and output variables (named QINN).

A DNN using a quantum layer was implemented in tensorflow-quantum (named TFQN, as in
TensorFlow-Quantum Network), but it could not produce results due to technical limitations of
the computational environment used for this study. In fact, the TQFN model requires a lot of
memory because it needs to transform a large number of data points into quantum data.

The training set was formed by randomly selecting 80% of the rotations observed be-
tween 2011 and 2020, while the remaining 20% were used for validation. By moving one step
forward in time, all data between 2012 and 2021 were used for testing purposes. The learning
rate of the ADAM optimizer (Kingma and Ba, 2014; Chollet et al., 2015) was set to 0.001 while
the other settings were kept fixed to their default values. For all networks, the batch size was set
to 2,048 units and number of epochs to 4. Furthermore, to homogenize the variety of training
examples, the batches were randomly formed at each epoch using a shuffling algorithm. These
choices were made for assessing the convergence of the optimization algorithm using a limited
number of iterations. However, a higher number of epochs can help provide a better solution for
the models where the optimization algorithm requires more iterations to fully converge.

The several architectures developed for this application are shown in the tables in Ap-
pendix A. Because the original data are natively stored as 8-bit integers taking values from
the set {0, 1, . . . , 255}, the output layers have 256 neurons when indicator variables are con-
sidered and 8 neurons when the “dense” binary representation is used. The activation func-
tion in output is the softmax for all neural networks with exception for the logistic sigmoid
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Table 1: Average overall accuracy (%) at the county level obtained with six different models/al-
gorithms. Highest county-level accuracy is bolded.

County HOMC DNN RNN1 RNN2 RNN3 QINN

Livingston, IL 91.3 93.8 91.4 92.9 93.0 89.9
McLean, IL 91.5 95.2 94.3 94.9 94.9 92.8
Perkins, NE 79.1 91.9 89.2 89.1 89.1 87.0
Renville, ND 74.1 85.3 83.4 84.1 80.8 70.4
Shelby, OH 80.7 90.7 85.9 86.9 87.2 87.2
Hale, TX 69.4 77.0 76.3 75.7 68.6 66.7

used for RNN3 and QINN. The total number of trainable parameters dropped precipitously
from 592,388 (when using standard indicator variables) to 133,636 (when adopting recurrent
layers) and around 70,000 or less (when considering “dense” binary variables and recurrent lay-
ers). Rectified Linear Units (ReLU; Nair and Hinton, 2010) were considered as an activation
function of most hidden layers to address possible gradient vanishing problems. Dropout layers
were inserted in the architectures as a form of regularization (Hinton et al., 2012). Moreover,
simple (unrolled) RNN layers were considered to take advantage of temporal relationships in the
data.

Through the analysis of the resulting confusion matrix, standard accuracy measures (Con-
galton and Green, 2019) are computed to compare the performances of the two models (see
Figure 4). The overall accuracy indicates general agreement between the 2021 CDL and the
predictions. However, since the initialization of the parameters is randomized, the distribution
of the accuracy results is reported for each network rather than focusing on the best results
achieved by each architecture. This is achieved by computing the overall accuracy values for 50
different replicates of the predicting procedures. The resulting accuracy of the fitted models are
shown in the boxplots in Figure 4. Furthermore, the average overall accuracy (shown in Table 1)
is computed by county for each neural model, and can be compared to the overall accuracy
produced using the HOMC algorithm described in Section 2.4 with the same input information
provided to the neural models, i.e. by considering crop rotation patters of length p = 9. In
Livingston and McLean County in Illinois where the primary crops are corn and soybeans in a
regular rotation, the DNN model achieves overall prediction accuracy values that are over 93%.
In Shelby, Ohio (predominantly planted to corn and soybeans), and in Perkins, Nebraska (where
corn, soybeans and wheat are grown), the DNN prediction accuracy values are between 90% and
92%. In Renville, North Dakota, where there is a much larger variety of crops grown with a var-
ied crop rotation pattern, the accuracy of the DNN model is 85%. In Hale, Texas, the DNN
overall prediction accuracy is 77%, the lowest when compared to the other counties. On average,
the neural models perform quite similarly, although the HOMC outperformed RNN3 in Hale,
Texas, and the QINN in Hale, Texas; Renville, North Dakota; and Livingston, Illinois.

The results obtained through the approach based on the HOMCs are computed for the six
counties shown in Table 2. The highest accuracy values were produced for the Illinois counties
due to more stable rotations dominated by corn and soybeans. However, the algorithm pro-
duced better predictions using the information from the previous year for the counties in Illinois
and Nebraska. The highest HOMC accuracy was produced using three-year rotations in North
Dakota, four-year rotations in Ohio, and five-year rotations in Texas. It appears that the accu-
racy is dependent on both the variety of crops planted in a county and on the lengths of the
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Figure 4: Accuracy indices (%) for the two neural architectures considered. Five statistics (min-
imum, first quartile, median, third quartile, and maximum) are reported to summarize the
distribution of the results obtained after 50 experimental replicates.

Table 2: Overall accuracy (%) obtained with HOMCs at different time steps p. Best performance
are bolded.

County p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

Livingston County, IL 91.8 91.4 91.7 91.5 91.5 91.5 91.5 91.5 91.3
McLean County, IL 92.3 92.1 91.8 91.9 91.9 91.9 91.8 91.6 91.5
Perkins County, NE 81.4 78.1 79.0 79.0 80.3 79.9 79.3 79.3 79.1
Renville County, ND 73.7 76.5 77.0 76.1 75.0 74.8 74.6 74.3 74.1
Shelby County, OH 80.5 80.3 81.5 81.6 81.1 80.9 80.9 80.7 80.7
Hale County, TX 71.4 70.6 70.1 71.4 71.4 70.6 70.4 69.7 69.4

sequences of crops provided in input to the models. However, none of the accuracies in Table 2
are higher than those produced using the DNN and showed in Table 1.

From a computational perspective, the results obtained to evaluate the computational per-
formances were produced on a virtual machine with 20.04 Ubuntu Linux operative system run-
ning on a cloud environment operated by Google with an Intel Xeon CPU having 6 dual-
threading cores at 2.20GHz, 504GB of RAM. The programs were written in python (3.8.10)
to operate with tensorflow (2.7.0; Abadi et al., 2015). Furthermore, two C functions were im-
plemented to convert native raster data into the binary format specific to the network under
consideration. To accelerate such conversion, the OpenMP library (Dagum and Menon, 1998)
and Single Instruction-stream Multiple Data-stream (SIMD; Cypher and Sanz, 2012) technology
were used to allow the code to run in parallel on several CPU cores. Specialized hardware, such
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as GPUs, TPUs or optical/photonic devices, have the potential to improve the computational
efficiency required by the neural models considered in this paper. However, the HOMC-based
algorithm was implemented in R, and it does not require a supercomputer to produce results
when using data at the county level. Although the HOMC algorithm has been designed to oper-
ate with the least amount of memory, the differences in accuracy with respect to the best neural
network model do not justify its potential use for operational purposes.

The time required for data preparation from a GeoTIFF format into feather datasets ranged
between 1.34 seconds (for the smallest county, i.e. Shelby, OH) to about 7 seconds (for the largest
county, i.e. Renville, ND). The conversion of the input variables into indicator variables ranged
from 0.12 to 0.33 seconds, while the conversion into “dense” binary variable ranged from 0.03
to 0.14 seconds. The difference in time observed between the two type of conversion is mostly
attributed to memory allocation rather than computation time. As shown in Table 8, the average
total running time by model and county was mostly dependent on the number of data points
to process. For the smallest county, the running time ranged between 9.3 seconds (for QINN)
and 55.9 seconds (for RNN3). For the largest county, the running time ranged between 39.8
seconds (for QINN) and 178 seconds (for RNN3). In general, the training time required by
RNN1, RNN2 and RNN3 models tends to be longer than the training time required by other
network models. The time elapsed for the HOMC is not comparable with those reported for
the neural networks. However, the results reported in Table 2 were produced on a laptop with
Windows 10 mounting an Intel Core i5-8350 CPU at 1.7 GHz and with 8 GB of RAM.

When using DNN the total runtime is dependent on the number of samples in each batch
to compute the stochastic gradient descent and the total number of epochs. On the one hand,
if the number of batches is relatively small, more time is required but faster convergence might
be achieved within an epoch. On the other hand, a larger number of epochs can produce models
that are more stable. In this study, it was observed that the networks using the DBR could
require more epochs, but this does not guarantee that the overall accuracy is going to be as
high as that produced by the DNN model. In an operational environment, where a tradeoff
between accuracy and training time must be considered, the use of recurrent layers should be
avoided. However, the adoption of cloud technologies is required to allow several DNN models
to be trained in parallel for processing much larger spatial datasets.

4 Conclusion
This paper provides a thorough evaluation and comparison of the crop specific prediction results
obtained using the HOMC algorithm and five types of DNN models for six major crop-production
counties, which reflect the range of major crops grown and a variety of crop rotation patterns
in the Midwest and southern US. In this paper, five models are applied to crop rotation data
between 2011 and 2021 from Renville, North Dakota; Perkins, Nebraska; Hale, Texas; Livingston,
Illinois; McLean, Illinois; and Shelby, Ohio (as shown in Figure 3). Although the DNN is the
less parsimonious model among those considered, the DNN model achieved the highest overall
accuracies for the six counties when compared to those obtained with the other models (as shown
in Table 1). All model results were compared to the official CDL in 2021.

Specifically, in Livingston and McLean Counties, Illinois; where there are two major crops
and a consistent corn and soybean rotation pattern; the DNN achieved the highest accuracies
with Livingston at 93.8% and Mclean at 95.2%. This is compared with the corresponding neural
model results which range from 89.9% to 94.9%. In Shelby, Ohio, where corn and soybeans
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are the major crops, but grown in a less consistent crop rotation pattern than Illinois. The
DNN achieved a 90.7% prediction accuracy while the other approaches achieved accuracy values
ranging from 80.7% to 87.2%. In Perkins, Nebraska; where a wider range of crops including corn,
soybeans and winter wheat are grown; the DNN accuracy is 91.9% and the accuracy values for
the other models range from 79.1% to 89.2%. In Hale County, Texas; the DNN accuracy value
is 77% while the accuracy values for the other models range from 69.4% to 76.3%. In Renville,
ND, where a wide variety of crops are grown with range of rotation patterns; the DNN accuracy
is 85.3% and the accuracy values for the other models range from 74.1% to 84.1%. Based on
these results, the proposed DNN model, which allows for the incorporation of long time series
data, provides the most robust algorithm for crop prediction modeling across six agriculturally
intensive counties and potentially the 48 conterminous states.

Even if the proposed algorithm based on HOMC counts crop transitions rather than opti-
mizing a set of parameters through gradient-based algorithms, it is not always the most com-
putationally efficient approach studied in this paper. Even if the DNN model is not the most
parsimonious model it requires very few epochs to produce stable results. Consequently, the DNN
model can be considered for large scale applications when powerful computational devices are
available. Future research will involve generalizing the proposed methodology to the 48 conter-
minous states, which will require sampling the data from an even greater variety of agricultural
practices. Strong prediction accuracies ranging from 77% to 95.2% were achieved with DNN over
the six counties. For operational crop classification, like the methodology used to produce the
NASS CDL, the highest accuracies are generally obtained at the end of the summer growing sea-
son (October 1) when satellite imagery acquired throughout the entire growing season (between
April 1 to October 1) are available. In the future, improvements to the networks considered in
this paper may be achieved by accounting for information on the early (and late) stages of the
crop phenological cycle.

Supplementary Material
Supplementary materials of the paper entitled “An Assessment of Crop-Specific Land Cover
Predictions Using High-Order Markov Chains and Deep Neural Networks”

A Neural Network Architectures

Table 3: Structure of the DNN model implemented to predict the next crop rotation using
standard indicator/dummy variables as inputs and outputs.

Layer type Output shape Num. param.

Flatten (None, 2304) 0
Dense ReLU (None, 256) 590,080
Dropout at 50% (None, 256) 0
Dense ReLU (None, 4) 1,028
Dense softmax (None, 256) 1,280

Total parameters: 592,388
Trainable parameters: 592,388
Non-trainable parameters: 0
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Table 4: Structure of the RNN1 model implemented to predict the next crop rotation using
standard indicator/dummy variables as inputs and outputs.

Layer type Output shape Num. param.

SimpleRNN (None, 256) 131,328
Dropout at 50% (None, 256) 0
Dense ReLU (None, 4) 1,028
Dense softmax (None, 256) 1,280

Total parameters: 133,636
Trainable parameters: 133,636
Non-trainable parameters: 0

Table 5: Structure of the RNN2 model implemented to predict the next crop rotation using
“dense” binary variables as inputs and indicator/dummy variables as outputs.

Layer type Output shape Num. param.

SimpleRNN (None, 256) 67,840
Dropout at 50% (None, 256) 0
Dense ReLU (None, 4) 1,028
Dense softmax (None, 256) 1,280

Total parameters: 70,148
Trainable parameters: 70,148
Non-trainable parameters: 0

Table 6: Structure of the RNN3 model implemented to predict the next crop rotation using
indicator/dummy variables as inputs and “dense” binary variables as outputs.

Layer type Output shape Num. param.

SimpleRNN (None, 256) 131,328
Dropout at 50% (None, 256) 0
Dense ReLU (None, 4) 1,028
Dense sigmoid (None, 8) 40

Total parameters: 132,396
Trainable parameters: 132,396
Non-trainable parameters: 0
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B Computational Time

Table 7: Structure of the QINN model implemented to predict the next crop rotation using
“dense” binary variables as inputs and output.

Layer type Output shape Num. param.

SimpleRNN (None, 9) 162
Dropout at 50% (None, 9) 0
Dense ReLU (None, 64) 640
Dense sigmoid (None, 8) 520

Total parameters: 1,322
Trainable parameters: 1,322
Non-trainable parameters: 0

Figure 5: Distributions of total training time (expressed in seconds) of five neural models shown
for each county.

Table 8: Average total training time (expressed in seconds) for the neural models and HOMC
algorithm shown for each county. The fastest approach of each county is bolded.

County HOMC DNN RNN1 RNN2 RNN3 QINN

Livingston, IL 14.5 79.0 147.2 120.2 140.9 31.4
McLean, IL 19.0 86.3 170.4 135.3 155.7 36.1
Perkins, NE 24.0 57.5 103.0 88.3 107.2 23.9
Renville, ND 88.7 95.5 171.5 145.6 178.0 39.8
Shelby, OH 15.0 30.0 54.1 47.4 55.9 9.3
Hale, TX 43.7 63.1 108.4 92.2 106.3 27.0
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